Hyperbaric oxygen therapy improves local microenvironment after spinal cord injury
نویسندگان
چکیده
Clinical studies have shown that hyperbaric oxygen therapy improves motor function in patients with spinal cord injury. In the present study, we explored the mechanisms associated with the recovery of neurological function after hyperbaric oxygen therapy in a rat model of spinal cord injury. We established an acute spinal cord injury model using a modification of the free-falling object method, and treated the animals with oxygen at 0.2 MPa for 45 minutes, 4 hours after injury. The treatment was administered four times per day, for 3 days. Compared with model rats that did not receive the treatment, rats exposed to hyperbaric oxygen had fewer apoptotic cells in spinal cord tissue, lower expression levels of aquaporin 4/9 mRNA and protein, and more NF-200 positive nerve fibers. Furthermore, they had smaller spinal cord cavities, rapid recovery of somatosensory and motor evoked potentials, and notably better recovery of hindlimb motor function than model rats. Our findings indicate that hyperbaric oxygen therapy reduces apoptosis, downregulates aquaporin 4/9 mRNA and protein expression in injured spinal cord tissue, improves the local microenvironment for nerve regeneration, and protects and repairs the spinal cord after injury.
منابع مشابه
Hyperbaric oxygen therapy combined with Schwann cell transplantation promotes spinal cord injury recovery
Schwann cell transplantation and hyperbaric oxygen therapy each promote recovery from spinal cord injury, but it remains unclear whether their combination improves therapeutic results more than monotherapy. To investigate this, we used Schwann cell transplantation via the tail vein, hyperbaric oxygen therapy, or their combination, in rat models of spinal cord contusion injury. The combined trea...
متن کاملEffect of hyperbaric oxygen on MMP9/2 expression and motor function in rats with spinal cord injury.
To study the effect of hyperbaric oxygen intervention on the microenvironment of nerve regeneration after spinal cord injury modeling and to explore the possible mechanism of nerve regeneration and functional recovery in rats with spinal cord injury. In 98 adult female SD rats, 90 successful models were obtained, which were divided into sham group, spinal cord injury group and hyperbaric oxygen...
متن کاملTreatment of nervous system injuries by hyperbaric oxygen: a review of molecular mechanisms
Background and aims: The use of hyperbaric oxygen therapy is one of the treatment methods to treat many diseases and injuries such as decompression sickness, wound healing, carbon monoxide poisoning, thermal burns, and nervous system injuries. This article aims to review the possible mechanisms of the effectiveness of this treatment in neurological injuries according to the available studies...
متن کاملEffects of hyperbaric oxygen therapy on NACHT domain-leucine-rich-repeat- and pyrin domain-containing protein 3 inflammasome expression in rats following spinal cord injury.
The clinical application of hyperbaric oxygen therapy (HBOT) in spinal cord injury (SCI) has been reported, however the mechanism underlying its therapeutic effects remains to be elucidated. In the present study, SCI was modeled in male Sprague‑Dawley rats. A total of 120 rats were randomly divided into four groups: Sham‑operated group (SH); sham‑operated and hyperbaric oxygen group (SH+HBO); s...
متن کاملAspects of neurological decompression illness: a view from Bethesda.
A minority of divers with neurological decompression illness (DCI) fail to improve with recompression treatment. This is particularly seen in cases where features of severe spinal cord injury develop soon after surfacing. Haemorrhage into the spinal cord is implicated in the pathogenesis of these cases, and evidence is presented that supports the view that the bleeding coincides with shrinkage ...
متن کامل